BIOMOLECULE FRQ	Peer REVIEW/ EDIT
------------------------	--------------------------

 Name of person's paper _____
 Date _____
 Period _____
 Name of Reviewer

Directions: You will need 4 different colored pencils to find and highlight the evidence in the paper you are reviewing. When you find evidence, use the letters A, B, C, D to show what Part of the rubric the student showed evidence for. I will guide you through one example during class.

Criteria	Points	
Part A- Addressed why carbon is important:		
Carbon has 4 valance electrons, therefore can form many types of bonds, single, double, triple ectand structures, like long chains and pentagonal and hexagonal shapes,	1 – valence electrons 1- different shapes	
 Carbon is able to make many complex structures like the 4 biomolecules Introduced the 3 macromolecules of interest- Which molecules are going to be discussed? 	1- complex structure 1- biomolecule intro Total 4pts	
Part B- Addressed structure of 3 macromolecules	-	
Carbohydrates: (3 points max)		
-monomers join together w/ glyosidic bonds to make disaccharides + water -have 1:2:1 ratio CHO -it has a hexagonal structure, sometimes pentagonal / carbon rings		
 Lipids: (3 points max) -made of glycerol and fatty acid chains 	3	
 -long chains of carbon surrounded by hydrogen -they contain a carboxyl group at the end of each fatty acid -can be unsaturated and saturated and discuss the differences -phospholipids are polymers that have two fatty acid chains and a phosphate group. 	3	
- most are hydrophobic in nature	3	
 Proteins: (3 points max) -chains of amino acids, monomer is amino acid make peptide bonds -take on levels of organization, primary, secondary, tertiary, quaternary -consist of a carboxyl and amine group -the differences in each amino acid come from the "R" group which is the 		
 side chain that makes the individual 20 amino acids different. Nucleic Acid (3 points max) 	3	
 -consists of nucleotide monomers -nucleotides = 5-carbon sugar, a phosphate group and nitrogenous base. -form phosphodiester bonds between the sugar and phosphate groups of each nucleotide. 		
-in RNA it is made of a single helix, DNA is double.	3 Total pts 9	
Part C: Discuss two examples from life for each of the three macromolecules		
 Carbohydrates (2 points max) -Any monosaccharide (e.g. glucose, fructose, galactose, ribose, etc.): major energy source in living things - Starch: plant storage form of energy -Cellulose: fiber-like structural material used in plant cell walls 		
- Glycogen: animal short-term storage form of energy -Chitin: structural material (arthropod exoskeleton and fungal cell walls)	2	

Part C: Continued		
□ Lipids		
-Triglycerides: energy storage, insulation, shock absorption		
-Phospholipids: Main structural component of membranes, where they		
arrange in bilayers.		
-Waxes: Lipids that serve as coatings for plant parts and as animal	2	
coveringsSteroids: Component of animal cell membranes and/or		
modified to form sex hormones		
□ Proteins		
-enzymes, structural in cells,		
- part if the immune system,		
-transporters in and out of cells		
-any other example of a protein with function listed; such as Hemoglobin:	2	
an oxygen-transport protein in red blood cells		
□ Nucleic Acids	2	
- DNA, RNA, ATP tell why they are important		Total pts 6
Part D: How are polymers created from monomers?		
□ All macromolecules, lipids, carbohydrates, proteins or nucleic acids are all		
made by linking monomers together by dehydration synthesis or		
condensation reaction.		
Full credit by stating all 3 macromolecules of interest are made in this way	3	
\Box Should of written the monomer (reactants) for each and the products,		
$(polymer + H_2O)$ (6	
Must discuss all 3 macromolecules, reactants and products when making	6	
monomers into polymers.		
During digestion these macromolecules are taken apart, by hydrolysis,		
must explain what happens here,	1	
No need to mention all 3 but give an example from one macromolecule	1	Total nts 10
		Total pts 10