Name of person's paper \qquad Date \qquad Period \qquad Name of Reviewer

Directions: You will need 4 different colored pencils to find and highlight the evidence in the paper you are reviewing. When you find evidence, use the letters $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ to show what Part of the rubric the student showed evidence for. I will guide you through one example during class.

Criteria	Points
Part A- Addressed why carbon is important: \square Carbon has 4 valance electrons, therefore can form many types of bonds, single, double, triple ect... and structures, like long chains and pentagonal and hexagonal shapes, \square Carbon is able to make many complex structures like the 4 biomolecules Introduced the 3 macromolecules of interestWhich molecules are going to be discussed?	1 - valence electrons 1- different shapes 1- complex structure 1- biomolecule intro Total 4pts
Part B- Addressed structure of $\mathbf{3}$ macromolecules	
Carbohydrates: (3 points max) -monomers join together w/ glyosidic bonds to make disaccharides + water -have 1:2:1 ratio CHO -it has a hexagonal structure, sometimes pentagonal / carbon rings \square Lipids: (3 points max) -made of glycerol and fatty acid chains -long chains of carbon surrounded by hydrogen -they contain a carboxyl group at the end of each fatty acid -can be unsaturated and saturated and discuss the differences -phospholipids are polymers that have two fatty acid chains and a phosphate group. - most are hydrophobic in nature \square Proteins: (3 points max) -chains of amino acids, monomer is amino acid - make peptide bonds -take on levels of organization, primary, secondary, tertiary, quaternary -consist of a carboxyl and amine group -the differences in each amino acid come from the " R " group which is the side chain that makes the individual 20 amino acids different. \square Nucleic Acid (3 points max) -consists of nucleotide monomers -nucleotides = 5-carbon sugar, a phosphate group and nitrogenous base. -form phosphodiester bonds between the sugar and phosphate groups of each nucleotide. -in RNA it is made of a single helix, DNA is double.	3 3 3 3 Total pts 9
Part C: Discuss two examples from life for each of the three macromolecules	
Carbohydrates (2 points max) -Any monosaccharide (e.g. glucose, fructose, galactose, ribose, etc.): major energy source in living things - Starch: plant storage form of energy -Cellulose: fiber-like structural material used in plant cell walls - Glycogen: animal short-term storage form of energy -Chitin: structural material (arthropod exoskeleton and fungal cell walls)	2

Part C: Continued Lipids -Triglycerides: energy storage, insulation, shock absorption -Phospholipids: Main structural component of membranes, where they arrange in bilayers. -Waxes: Lipids that serve as coatings for plant parts and as animal coverings. --Steroids: Component of animal cell membranes and/or modified to form sex hormones Proteins -enzymes, structural in cells, - part if the immune system, -transporters in and out of cells -any other example of a protein with function listed; such as Hemoglobin: an oxygen-transport protein in red blood cells Nucleic Acids - DNA, RNA, ATP tell why they are important	2 2	Total pts 6
Part D: How are polymers created from monomers? All macromolecules, lipids, carbohydrates, proteins or nucleic acids are all made by linking monomers together by dehydration synthesis or condensation reaction. Full credit by stating all 3 macromolecules of interest are made in this way \square Should of written the monomer (reactants) for each and the products, (polymer $+\mathrm{H}_{2} \mathrm{O}$) (Must discuss all 3 macromolecules, reactants and products when making monomers into polymers. \square During digestion these macromolecules are taken apart, by hydrolysis, must explain what happens here, No need to mention all 3 but give an example from one macromolecule	3	$\text { Total pts } 10$

