

Photosynthesis

- Method of converting sun energy into chemical energy usable by cells
- Autotrophs: self feeders, organisms capable of making their own food
- Takes place in chloroplasts
 - Light absorbing pigment molecules e.g. chlorophyll
 - Leaves reflect green light

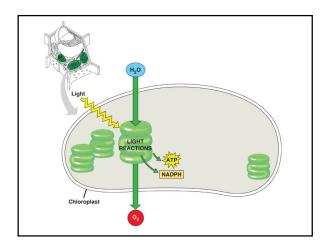
Overall Reaction

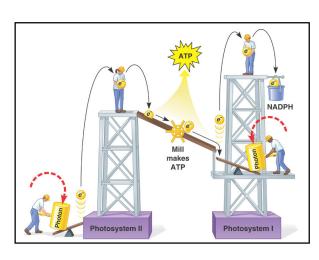
6CO₂ + 6H₂O + light

 $energy \rightarrow C_6 H_{12} O_6 + 6 O_2$

- Water enters as a liquid leaves as a gas (transpiration)
- Two sets of reactions occur during this process
 - <u>Light Dependent</u> Use energy from sunlight to create ATP and takes place in thylakoid's
 - <u>Light Independent</u> ATP and NADPH molecules produce glucose without light. Takes place in the stroma. AKA Calvin Cycle

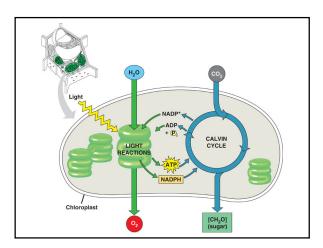
Light-dependent Reactions

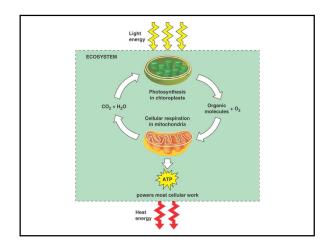

• In the thylakoids, chlorophyll and proteins create photosystems (I and II)


Photosystem II

- Light energy absorbed by chlorophyll produces high energy electrons
- H₂O split to replace electrons and release H+ and O₂
- Electrons passed down ETC to Photosystem I

Photosystem I


- Electrons reenergized
- 2nd ETC transfers electrons to NADP producing NADPH (electron carrier)
- H ions build up, need to pass through membrane, ATP synthase is used to move and transform ADP to ATP


Calvin Cycle (light independent or "dark" reactions)

- ATP and NADPH generated in light reaction used to fuel light independent reaction
 - CO₂ broken apart, then reassemble the carbons into glucose Carbon Fixation
 - Need 6 CO₂ molecules to form Glucose

FACTORS AFFECTING PHOTOSYNTHESIS

- Light, temperature and water
- Enzymes of photosynthesis function best between 0' & 35' C.
- Plants can perform under extreme conditions
 - C4 photosynthesis high temperatures/intense light (Corn, sugar cane)
 - CAM plants Dry climates obtain CO₂ and minimize water loss (cactus)

